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INTRODUCTION

Much of the recent work on the statistical mechanics of the electrical double layer has

focused on the application of theories based upon integral equations to models where the

solvent is assumed to be structureless. These theories are an improvement of the classical

Poisson-Boltzmann theory of Gouy [1] and Chapman [2], mainly because they give a better

treatment of the short-ranged part of the ionic interactions. However, the influence of the

solvent structure on the electrode-electrolyte interface is well recognized [3]. It is thus

desirable to extend the integral equation approach to models where the solvent is another

molecular species.

In this communication-we consider a simplified model of an electrode-electrolyte

interface which takes into account the discreteness of the solvent (Fig. 1). The electrode is

represented as a hard infinite plane with a uniform surface chargf density, while the

electrolytic solution is modeled as a mixture of charged hard spheres (the ions) and dipolar

(nonpolarizable) hard spheres (the solvent). In addition, we assume the electrode has a

dielectric constant unit; thus we ignore the image effects. For this model we developed a

treatment in which all the interactions (ion-ion, ion-solvent, solvent-solvent, electrode

solution) are considered on the same (classical) statistical mechanical basis. In particular the

solvent is taken as a fully orientable system and no special treatment of a hypothetical inner

layer is made.

Blum and Henderson [4] and also Carnie and Chan [5] have studied this model within

the mean spherical approximation (MSA), the simplest known integral equation. We have

considered elsewhere [6) the application of another integral equation, related to the MSA,

which may be referred as a generalized MSA (GMSA). In this approximation the

Ornstein-Zernike (O-Z) equation for the particle-particle and electrode-particle correlations
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is solved for cloures which are generalizations of those of the MSA. The correlation

functions thus obtained give information of the micro-structure of the system and also permit

the evaluation of several thermodynamic and electrostatic properties of the interface. Here

we present some further GMSA calculations of some of these properties which complement

those of Reference [6].

THEORY

a. Eectrode-Particle Correlaton Functions

We divide the total (h) and direct (c) electrode-ion and electrode-dipole correlation

functions into a nonelectrostatic and an electrostatic part

ht(x) - h0 (x)±h1 (x)

hd(X,9 ) - h0(x) + V-3 hd(X) cos 9 (la)

c±(x) - Co(X)±cj(x)

Cd(XB) - c0(x) + V Cd(X) cos 9 , (Ib)

x and 8 being, respectively, the reduced distance (x/D) from the electrode and the angle

between the direction of the dipoles and the normal to the electrode.

/O0
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and we assume

c0 (x) = AO e 201

ci(x) - E*q*x + Aiezt,

Cd(X) - Ep + Ad e-Kz, X>-, (3)
V3 2'

where A., Z. (a-s,i,d) are parameters to be determined. When As=AimAd.O we recover

the MSA closures [4]. In Eq. (3) we use the dimensionless quantities q* 2 -q 2 /D;

#'2-p3t2/D2 and E*m(pD 3)1/ 2E (Em4vo), P being the Boltzmann thermal factor (kBT)'I.

If we consider row matrices M[Mi',Md], then the O-Z equation for the wall-particle

correlation functions becomes [6,71

h(x) t(x) +fz'dth(x.-.t)QB(t), x>;I(4

whe~re

(( ) - ; j dk

with

f(k - J2 X e'~ Vx) (6)"1/2

and

21 (k) I-f dr eikr QB(r). (7)

Here 2B(r) is the Baxter matrix of the electrolyte and is of the form

rQu(r) Qid(r)1- • (8)
L Qdi(r) Qdd(r) J

Similar relations (involving scalars) are valid for the nonelectrostatic terms [8].
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We have obtained explicit expressions for (r) in the MSA (9,10 and GMSA (11] as

simple sums involving powers of r and exponential functions of r. If we use the Eq. (3) with

A. - 0 (a-s,i,d) as the closure of the O-Z equation [Eq. (4)] we have a MSA/MSA or a

MSA/GMSA calculation according to whether we use the bulk MSA or GMSA expressions

for 2 B.

If we consider instead A., z. (amsid) as adjustable parameters we have a

GMSA/MSA calculation when .Q (MSA) is used or a GMSA/GMSA calculation if

(GMSA) is utilized. In both these last cases we can obtain the parameters demanding that

the correlation function satisfy the linearized hypernetted chain (LHNC) [12] conditions

h.(u- 1) -,X[7 1.(X- 1)] -, (a -+,_, (9a)

d(z- 4)- [h.(z. -) + 1],d(. (9b)

he;( - -1'.(X - 1) ,,(x- e)] (a- +,-) (9c)

I'( - 4 (X -i4(x - - -. ) + E,(x --L + 1 (9d)

where

1,(x) hx(z)-c,(x)-PU,(x) (-y + ,-,d) (10)

with
,U+(x) = -$U_(x) - -E*q* ( la)

PUd(X) E*A* (b)

and

,°,- ) €(.,- ) +h(.. ) ,, ,-o) K
7.

2 2
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L Sows Strmtwal aml Ieetroutatle Function of the Iterface

Once we obtain the total wall-particle correlation functions by numerical integration of

Eq. (4) (adequate precision is obtained using the trapezoidal rule), we can evaluate

I - The density profiles of the ions and the density-orientation profile of the dipoles

po,(x) - p:,[h:,(x) + 1]

Pd(X,O) - Pdlhd(X,0) + 11], (14)

2 - The charge density profile

q*(x) - p 11 qhi(x), (15)

where p* m piD3

3 - The polarization density profile

P(x) (PD) 1 / 2P(i) - PdA hd(x) (16)

with P - pdD, and

4 - The potential profile 4. '(x)-(flD)/ 2 -(x), the solution of the Poisson equation,

4120(): -m -41Iq*(x) - dP(x)] (17)

which is given by

OO -= -41p i q.f dt (t - x)hi(t) - P 'd" dt hd(t)

AO.-E~z + 4vp'q.f dt (t - x)h 1(t + -' pAf, dt hd(t), (18)

where A4*=O*(x=O) is the total potential drop across the interface.

~ 4.-'S
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We obtain (6] analytical expressions for A#* and also for PO the total polarization

Ps w (PD) 1 2 . PdA- fdt hd(t)

A
- U tm hd(s) (19)

A.00 = -4rpqif'dt thi(t)- 4 r pd,&*0'f dt hd(t)

A h(Z) P*j* A 1
"4 li[ pjq Pd ' hd(S)I, (20)

where

im ( E aId"a 2 (1-T)]
sr0 V/dod2  do(1 - Tdd;1)

+______ Ad -~ (Z) I' 1, (21) (Z .

A- d Z-(l - T dd;) ( I d a a2 2

Lim (s Eq + ( (1 -1i)(I-Td i~i
5-o G s d2 2 do(1 - Tdd; 1)

+ d(d - Tdd; Oz.) 1 - Tdd) + OZ-) Tdi (22)
ami.d zi ad

and j ,V-7T and a, and a,2 are the non-null elements of the matrix

An a2 ] -m u rn (23)

100

and Ti. Tdd. etc., are the elements of the matrix

I- fi dr [QB(r) + A] (24)

0. .,. ..
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The bulk strength parameters do and d2 are defined by

d5 - 4y.i q,2 ; d2 - .3 pdA* 2 . (25)

Finally

(1 - Tdd;1 ) - [(1 - Td)2 + (Tdi) -d~j] . (26)

From Eq. (20) we can evaluate the differential capacity from

C .= D Cd -- L 4-1 .L( a 4* -" (27)4w 614 4 E

RESULTS

In Figs. 2 and 3 we show the charge and polarization density profies calculated by

using the GMSA/GMSA, GMSA/MSA and MSA/MSA approximations. The oscillations

observed are consequence of the discrete character of the solvent. This follows from a

simple observation of the corresponding curves resulting from models where the solvent is

treated as a continuum [13,14].

In Fig. 4 we compare the potential profile for the three integral equations considered.

Here again the oscillations are notable. The change in slope of the potential at the

Helmholtz plane (x-1/2), which implies a change of the direction of the electric field, is due

to the large polarization at this plane. This is more clearly seen if we write

do'(x) -E-4P -1 (28)

dx 
X E(

2

If we attempted to define a local dielectric constant in the impenetrable region or Stern

layer [Oxe 1/2] by requiring that the electric displacement be continuous at x-1/2 we
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would arrive at a negative local dielectric constant in this region. This illustrates the

difficulties and ambiguities associated with attempts to define a local dielectric constant. The

point is that the dielectric constant is a macroscopic quantity, computed using an infinitely

large volume, and any attempts to define a local dielectric constant will lead to

inconsistencies.

Figures 5 and 6 show the differential capacity as a function of the total potential drop

across the complete double layer. The MSA/MSA curve is independent of A# and so is

unphysical except near 4-0. The other two curves are more reasonable and, in particular,

show the differential capacitance increasing with the magnitude of the potential. Ultimately,

we expect GMSA differential capacitance curves to flatten.

CONCLUSIONS

The MSA gives considerable insight into the structure and properties of the double

layer. However, it has the drawback that the MSA results are linear in the charge density on

the electrode. The GMSA results presented here overcome this difficulty. These results

represent our first attempt to apply the GMSA and have some difficulties. For example, the

density profiles do not satisfy the contact value conditions of Blum and Henderson [4]. We

expect to develop other and better schemes for choosing the GMSA parameters in the near

future.

In contrast to the featureless curves of the Gouy-Chapman theory, the MSA and

GMSA ionic profiles, potential profile and polarization density show oscillations which imply

a layering of sheets of alternating charge near the electrode. These oscillations are even

more pronounced in the GMSA than in the MSA. In contrast the differential capacitance

curves are rather featureless. In view of the simplicity of our model which ignores the
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interaction of the metal with the double layer and which is based on a oversimplified picture

of the solvent, the differential capacitance curves are reasonable, especially considering that

we have not attempted to adjust any parameters to fit any experimental data.

ware
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Figure 2. The normalized charge density profile q*(x),/piq * - hi(x) for a nonprimitive
electrolyte (q-=40. ,2m2.5.~ -i 0.007, pd - 0.6) near a charged hard wail (E-=1.5).
- GMSA, CMSA, -.-.- GMSA/MSA, MSA/MSA.
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